NeuronDB: AI Database Extension for PostgreSQL

AI Database Extension for PostgreSQL. Vector search, ML inference, GPU acceleration, and RAG pipeline, all within PostgreSQL

NeuronDB A PostgreSQL AI-Extension Demo

neurondb-demo
NeurondB Interactive Demo Terminal
Building and installing NeurondB extension for PostgreSQL
📦 Installation⚙️ Configuration🔧 Setup
Ready to demonstrate Build. Click "Run Demo" to begin.
Speed:
Ready to explore NeuronDB

Architecture

AI database architecture with vector search, ML inference, and RAG pipeline

NeuronDB Architecture

PostgreSQL 16-18

ACID | MVCC | WAL | Replication

Vector Engine

  • • HNSW & IVF Indexing
  • • 10+ Distance Metrics
  • • Quantization
  • • SIMD Optimized

ML Engine

  • • 52 ML Algorithms
  • • ONNX Runtime
  • • Batch Processing
  • • Pure C Implementation

Embedding Engine

  • • Text Embeddings
  • • Multimodal Support
  • • Hugging Face Integration
  • • Caching & Batching

GPU Accelerator

  • • CUDA (NVIDIA)
  • • ROCm (AMD)
  • • Metal (Apple)
  • • Auto Detection

Advanced Features

Hybrid Search
Vector + FTS
Reranking
Cross-encoder, LLM
RAG Pipeline
Complete In-DB
Background Workers
4 Workers

SQL API Layer

473 SQL Functions | Operators | Types | Views

AI Database Features

Why NeuronDB

Vector Search & Indexing

5 vector types: vector (float32), vectorp (packed), vecmap (sparse map), vgraph (graph-based), rtext (retrieval text). HNSW and IVF indexing with automatic tuning. Multiple distance metrics: L2 (Euclidean), Cosine, Inner Product, Manhattan, Hamming, Jaccard. Product Quantization (PQ) and Optimized PQ (OPQ) for 2x-32x compression.

ML & Embeddings

52 ML algorithms implemented in pure C: Random Forest, XGBoost, LightGBM, CatBoost, Linear/Logistic Regression, Ridge, Lasso, SVM, KNN, Naive Bayes, Decision Trees, Neural Networks, Deep Learning. Built-in embedding generation with caching. ONNX runtime integration. Batch processing with GPU acceleration. Model catalog and versioning.

Hybrid Search & Retrieval

Combine vector similarity with full-text search (BM25). Weighted scoring (70% vector + 30% text). Multi-vector documents. Faceted search with category filters. Temporal decay for time-sensitive relevance. Optimal for real-world search scenarios.

Reranking

Cross-encoder neural reranking for precision improvement. LLM-powered scoring (GPT-4, Claude). ColBERT late interaction models. MMR (Maximal Marginal Relevance) for diversity. Ensemble strategies combining multiple rankers. Sub-10ms latency.

RAG Pipeline

Retrieval Augmented Generation in PostgreSQL. Document chunking and processing. Semantic retrieval with reranking. LLM integration for answer generation. Context management. Guardrails for content safety. RAG in SQL.

Background Workers

4 production workers: neuranq (async job queue executor with SKIP LOCKED, retries, poison handling, batch processing), neuranmon (live query auto-tuner for search params, cache rotation, recall@k tracking), neurandefrag (automatic index maintenance, compaction, tombstone pruning, rebuild scheduling), neuranllm (LLM job processing with crash recovery). All tenant-aware with QPS/cost budgets.

ML Analytics Suite

Analytics: K-means, Mini-batch K-means, DBSCAN, GMM, Hierarchical clustering (all GPU-accelerated). Dimensionality reduction: PCA, PCA Whitening, OPQ. Outlier detection: Z-score, Modified Z-score, IQR, Isolation Forest. Quality metrics: Davies-Bouldin Index, Recall@K, Precision@K, F1@K, MRR. Drift detection with temporal monitoring. Topic discovery and modeling.

GPU Acceleration

GPU support: CUDA (NVIDIA), ROCm (AMD), Metal (Apple Silicon). GPU-accelerated ML algorithms: Random Forest, XGBoost, LightGBM, Linear/Logistic Regression, SVM, KNN, Decision Trees, Naive Bayes, GMM, K-means. Batch distance computation (100x speedup). Automatic GPU detection with CPU fallback. Multi-stream compute overlap. Memory management.

Performance & Optimization

SIMD-optimized distance calculations (AVX2, AVX-512, NEON). Intelligent query planning with cost estimates. ANN buffer cache for hot centroids. WAL compression with delta encoding. Parallel kNN execution. Predictive prefetching. Sub-millisecond searches on millions of vectors.

Security

Vector encryption (AES-GCM via OpenSSL). Differential privacy for embeddings. Row-level security (RLS) integration. Multi-tenant isolation. HMAC-SHA256 signed results. Audit logging with tamper detection. Usage metering and governance policies. GDPR-compliant data handling.

Monitoring & Observability

pg_stat_neurondb view with real-time metrics. Worker heartbeats and watchdog. Query latency histograms. Cache hit rate tracking. Recall@K monitoring. Model cost accounting. Prometheus exporter ready. Structured JSON logging with neurondb: prefix.

PostgreSQL Native Architecture

Pure C implementation following 100% PostgreSQL coding standards. 144 source files + 64 headers, zero compiler warnings. PGXS build system. 473 SQL functions/types/operators. Shared memory for caching. WAL integration for durability. SPI for safe operations. Background worker framework. Standard extension, zero external dependencies, no core modifications.

Capabilities

AI database features

CapabilityDescriptionPerformanceProduction Ready
Vector SearchHNSW indexing, multiple distance metrics, quantizationSub-millisecond on millions
ML InferenceONNX runtime, batch processing, embedding generationHigh-throughput batch ops
Hybrid SearchVector + FTS, multi-vector, faceted, temporalOptimized query planning
RerankingCross-encoder, LLM, ColBERT, ensembleGPU-accelerated support
Background WorkersQueue executor, auto-tuner, index maintenanceNon-blocking async ops
RAG PipelineComplete in-database RAG with document processingEnd-to-end optimization
ML AnalyticsClustering (K-means, DBSCAN, GMM), PCA, outlier detection, quality metrics, drift detectionGPU-accelerated algorithms
GPU AccelerationCUDA (NVIDIA), ROCm (AMD), Metal (Apple), 100x speedup on batch opsAuto-detection with CPU fallback
Performance OptimizationSIMD (AVX2/AVX-512/NEON), intelligent query planning, ANN cache, WAL compressionPredictive prefetching
SecurityVector encryption (AES-GCM), differential privacy, RLS integration, multi-tenant isolationGDPR-compliant
Monitoring & Observabilitypg_stat_neurondb view, worker heartbeats, latency histograms, Prometheus exporterReal-time metrics
PostgreSQL NativePure C implementation, 473 SQL functions, zero external dependencies, WAL integrationZero core modifications

NeurondB vs. Alternatives

Comparison of NeurondB with other PostgreSQL AI and vector extensions

FeatureNeurondBpgvectorpgvectorscalepgaiPostgresML
Vector IndexingHNSW + IVFHNSW + IVFStreamingDiskANNUses pgvectorpgvector-based
ML InferenceONNX (C++)NoneNoneAPI callsPython ML libs
Embedding GenerationIn-database (ONNX)ExternalExternalExternal APIIn-database (Transformers)
Hybrid SearchNative (Vector+FTS)ManualManualManualManual
RerankingCross-encoder, LLM, ColBERT, MMRNoneNoneNoneNone
ML Algorithms52 algorithms: RF, XGBoost, LightGBM, CatBoost, SVM, KNN, DT, NB, NN, K-means, DBSCAN, GMM, PCA, etc.NoneNoneNoneXGBoost, LightGBM, sklearn suite, Linear/Logistic
Background Workers4 workers: neuranq, neuranmon, neurandefrag, neuranllmNoneNoneNoneNone
RAG PipelineComplete In-DBNoneNonePartial (API)Partial (Python)
QuantizationFP16, INT8, Binary (2x-32x)Binary onlyBinary onlyNoneNone
ImplementationPure CPure CPure CRust + SQLPython + C
Training ModelsFine-tuning (roadmap)NoneNoneNoneFull training (sklearn, XGBoost, etc.)
Auto-Tuningneuranmon workerNoneNoneNoneNone
GPU SupportCUDA + ROCm + Metal (native C/C++)NoneNoneNoneCUDA (via Python)
PostgreSQL Versions16, 17, 1812-1815-1816-1814-16
LicensePostgreSQLPostgreSQLTimescale LicensePostgreSQLPostgreSQL
Vector Types5 types: vector, vectorp, vecmap, vgraph, rtext1 type: vector1 type: vectorUses pgvectorUses pgvector
Distance Metrics10+ metrics: L2, Cosine, Inner Product, Manhattan, Hamming, Jaccard, etc.3 metrics: L2, Cosine, Inner Product3 metrics: L2, Cosine, Inner ProductUses pgvectorUses pgvector
SQL Functions473 functions~20 functions~30 functions~15 functions~50 functions
Index MaintenanceAuto (neurandefrag worker)ManualManualManualManual
Performance (QPS)100K+ (with GPU)10K-50K50K-100KLimited (API overhead)5K-20K (Python overhead)
Memory EfficiencyOptimized (PQ/OPQ compression)StandardDisk-based (low memory)StandardHigh (Python models)
Multi-tenancyNative (tenant-aware workers)NoneNoneNoneNone
SecurityRow-level security, encryption, audit logsPostgreSQL RLSPostgreSQL RLSPostgreSQL RLSPostgreSQL RLS
Monitoringpg_stat_neurondb, Prometheus, GrafanaBasicBasicBasicLimited
Documentation473 functions documentedGoodModerateModerateGood
Community SupportActive (NeuronDB)Very Active (Anthropic)Moderate (Timescale)GrowingActive
ReadinessReadyReadyBetaEarly stageReady
DependenciesZero (pure C, optional ONNX)Zero (pure C)Zero (pure C)Rust runtimePython + ML libraries
Batch ProcessingNative (neuranq worker)ManualManualLimitedNative (Python)
Model CatalogBuilt-in (versioning, A/B testing)NoneNoneNoneBasic
Cost EfficiencyHigh (in-DB, no API costs)High (in-DB)High (disk-based)Low (API costs)Moderate (Python overhead)
Get Started

Add AI Capabilities to PostgreSQL

Install NeurondB. Build semantic search, RAG applications, and ML features in your PostgreSQL infrastructure.