NEURONMCP/MCP Server

NeuronMCP

Model Context Protocol server with 100+ tools (27 PostgreSQL + 70+ NeuronDB) enabling MCP-compatible clients (like Claude Desktop) to access NeuronDB. Vector operations, ML training, RAG pipeline, reranking, dataset loading, and PostgreSQL administration through JSON-RPC 2.0.

bash
Quickstart
./neurondb-mcp --help
100+ Tools27 PostgreSQL ToolsJSON-RPC 2.0stdio Transport
NeuronMCP
MCP Server
NeuronMCP: Model Context Protocol Server for NeuronDB

Architecture

MCP server architecture with protocol handling, tools, resources, and middleware

NeuronMCP Architecture

MCP Client

Claude Desktop | Custom Clients | stdio Communication

Protocol Handler

  • • JSON-RPC 2.0
  • • stdio Transport
  • • Request Routing
  • • Error Handling

Tools

  • • Vector Operations
  • • ML Operations
  • • Analytics
  • • RAG Operations

Resources

  • • Schema Info
  • • Model Catalog
  • • Index Config
  • • Stats & Config

Middleware

Validation
Input checks
Logging
Structured logs
Timeout
Request limits
Error Handling
Graceful errors

NeuronDB PostgreSQL

Vector Search | ML Algorithms | Embeddings | SQL Functions

NeuronMCP Tools

100+ tools for vector ops, ML, RAG, and database admin

NeuronMCP
console • demo
v1.0ready
100+ MCP tools
Vector search, embeddings, and indexing tools
JSON-RPC
Vector Toolsdemo
// Call vector search tool { "jsonrpc": "2.0", "id": 1, "method": "tools/call", "params": { "name": "vector_search", "arguments": { "table": "embeddings", "query_vector": [0.1, 0.2, ...], "top_k": 10, "distance": "cosine" } } }
Results5 rows
idsimilaritytext
420.9523Vector search result: semantic similarity matching in high-dimensional spaces…
380.9234HNSW index result: fast approximate nearest neighbor search…
350.8945Embedding generation result: text converted to numerical vectors…
310.8656Index creation result: HNSW index built successfully…
280.8367Similarity computation result: cosine distance calculated…
Performance
Query Time
8.42ms
Latency (P95)
12.5ms
QPS
8.2k
Status
ready
Query Statistics
Execution
Rows Returned5
Cache Hit96%
PlanOptimized
Connection
Databaseneuronmcp
Versionv1.0
Statusactive
Summary
Total Queries1,247
Success Rate99.8%
Avg Latency8.2ms
MCP Server Features

Why NeuronMCP

MCP Protocol Implementation

ClientServerJSON-RPC 2.0stdio | HTTP | SSE
  • Full JSON-RPC 2.0 implementation with stdio, HTTP, and SSE transport
  • Supports tools, resources, prompts protocol, sampling/completions, and progress tracking
  • Batch operations with transactional tool calls
  • Protocol version negotiation and capability discovery
  • Compatible with all MCP-compatible clients including Claude Desktop

Vector Operations Tools

Q
  • Vector search with multiple metrics: L2, Cosine, Inner Product, Manhattan, Hamming, Jaccard
  • Similarity computation and embedding generation (text, image, multimodal)
  • Index creation: HNSW and IVF indexing
  • Batch embedding generation with intelligent caching
  • Hybrid search with reciprocal rank fusion
  • Multi-vector, faceted, temporal, and diverse search capabilities

ML Operations Tools

TrainPredictEvalModel52 Algorithms
  • Complete ML pipeline: training, prediction, evaluation, and AutoML for all 52 algorithms
  • Model catalog management with versioning and A/B testing
  • Hyperparameter tuning support
  • ONNX model import, export, and inference
  • Model deployment workflows and monitoring

Reranking & RAG Operations

DocsRetrieveRerankGenerateLLM Response
  • Multiple reranking strategies: cross-encoder, LLM-powered, Cohere, ColBERT, LTR, ensemble
  • Complete RAG pipeline with document processing and chunking
  • Context retrieval and response generation
  • LLM integration for answer generation with customizable prompt templates

Analytics & Time Series

MetricsQualityAnalysisTime SeriesForecastAnalytics
  • Data analysis: clustering (K-Means, DBSCAN, GMM), dimensionality reduction (PCA)
  • Quality metrics: Recall@K, Precision@K, F1@K, MRR
  • Outlier detection: Z-score, Modified Z-score, IQR
  • Drift detection and topic discovery
  • Time series analysis: ARIMA, forecasting, and seasonal decomposition

Resource Management

SchemaModelsIndexesResourcesReal-time Subscriptions
  • Comprehensive resources: schema, model catalog, index configs, worker status, system stats
  • Real-time resource subscriptions for live updates
  • Resource discovery and metadata access
  • Search and filtering capabilities for resources

Middleware & Enterprise

AuthValidateLogEnterpriseMetrics | Webhooks | Circuit Breaker
  • Pluggable middleware: validation, logging, timeout, error handling
  • Authentication: JWT, API keys, OAuth2 with rate limiting
  • Caching layer with TTL and connection pooling
  • Enterprise features: Prometheus metrics, webhooks, retry/resilience (circuit breaker)
  • Health checks for database, tools, and resources

Dataset Loading & Processing

HF HubURLS3LocalPostgreSQLAuto-embedding
  • Load from HuggingFace, URLs (CSV, JSON, Parquet), GitHub, S3, and local files
  • Automatic schema detection and optimized PostgreSQL table creation
  • Auto-embedding generation for text columns
  • Batch loading with progress tracking
  • Support for multiple formats with efficient bulk loading

PostgreSQL Tools

AdminMonitor27 Tools
  • Complete PostgreSQL administration: version info, database statistics, connection monitoring
  • Lock inspection and replication status
  • Configuration settings and extension management
  • Query performance analysis and system resource monitoring

Comprehensive Tool Suite

VectorMLRAGPG100+Tools
  • 100+ tools: 27 PostgreSQL administration + 70+ NeuronDB tools
  • Vector operations, ML training, analytics, RAG, reranking, and database management
  • Vector search with 7+ distance metrics
  • Quantization tools: int8, fp16, binary, uint8, ternary, int4
  • Dataset loading from HuggingFace, URLs, GitHub, S3, and local files with auto-embedding
  • Vector graph operations and vecmap (sparse vector) support
  • Complete PostgreSQL administration from version info to performance tuning

Capabilities

MCP server features

CapabilityDescriptionPerformanceProduction Ready
MCP ProtocolJSON-RPC 2.0 over stdioLow-latency communication
Vector ToolsSearch, embeddings, indexingSub-second operations
ML ToolsTraining, prediction, evaluationGPU-accelerated
Analytics ToolsClustering, analysis, metricsEfficient algorithms
RAG ToolsDocument processing, retrievalEnd-to-end optimization
Reranking ToolsCross-encoder, LLM, Cohere, ColBERTNeural reranking
Dataset LoadingHuggingFace, URLs, GitHub, S3, localAuto-embedding
ResourcesSchema, models, indexes, statsReal-time subscriptions
Middleware & EnterpriseValidation, auth, metrics, webhooksProduction-ready
PostgreSQL ToolsAdmin, stats, monitoringComplete management
Get Started

Connect Claude Desktop to NeuronDB

Deploy NeuronMCP. Enable MCP-compatible clients to access NeuronDB vector search, ML algorithms, and RAG capabilities.